austalo
2022-12-12 18:40
Ciao,
Stavo leggendo riguardo il reticolo di Bravais e mi sono incastrato in un dubbio.
La definizione di reticolo per traslazione di vettori base mi è chiara, ma non capisco invece la definizione di "cella".
In particolare mi pare di capire che in 2D prendendo i vettori primitivi a1 e a2 disposti con un certo angolo tra loro essi definiscano una struttura che ripetuta per traslazione (a passi d'interi) determina l'intero reticolo, posso altresì definire una cella (a1 x a2) ed è detta "cella unitaria" se contiene interamente un solo atomo o "cella convenzionale" se ne contiene più d'uno. Di fatto questa cella è una superficie che ripeto per traslazione.
Il problema mi sorge in 3D, prendiamo i vettori primitivi: a1=(a/2,a/2,0), a2=(a/2,0,a/2), a3=(0,a/2,a/2), traslandoli mi danno un reticolo, cioè un insieme di punti1 che ha come cella convenzionale la cella "cubica a facce centrate" ripetendola mi dà il reticolo stesso appunto.
Ma la mia domanda è, perché la cella convenzionale non può qui essere quella data da a1 x a2 x a3? Ho un volume che se ripetuto mi dà l'intero reticolo. Perché devo invece prendere una cella cubica come cella elementare? (in realtà questo cubo è già una struttura ben più complessa della cella da me indicata)
Ringrazio per gli aiuti